BREVET DE TECHNICIEN SUPÉRIEUR
BIOANALYSES ET CONTRÔLES

ÉPREUVE DE SCIENCES PHYSIQUES ET CHIMIQUES

SESSION 2014

Durée : 2 heures
Coefficient : 3

Matériel autorisé :
- Toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu’il ne soit pas fait usage d’imprimante (Circulaire n°99-186, 16/11/1999).

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l’appréciation des copies.

Dès que le sujet vous est remis, assurez-vous qu’il est complet.
Le sujet se compose de 7 pages, numérotées de 1/7 à 7/7.
A : ÉTUDE D’UN FILAMENT DE MYCELIUM (15 points)

L’artisan fromager démontre tout son savoir-faire lorsqu’il fabrique du camembert. La production de ce type de fromage exige une bonne maîtrise des techniques de fabrication car elle se base sur l’apport d’une flore bien particulière, c’est-à-dire les levures et les moisissures. Cette flore fungique est responsable de l’apparence et du goût caractéristiques du fromage camembert. Il devient donc primordial d’être en mesure de suivre l’évolution de cette flore au cours de la maturation et de détecter rapidement la présence de contaminations. […]

L’élaboration de l’aspect, de la texture, du goût et des arômes caractéristiques des fromages repose le plus souvent sur l’activité des microorganismes. Pour un fromage de type camembert, certains microorganismes comme Penicillium Camemberti sont typiques de la phase de maturation. Le Penicillium Camemberti dont chaque spore a un diamètre de l’ordre de 4,0 μm est caractérisé par ses filaments de mycélium qui se développent en un feutrage blanc. Ce dernier transforme la surface du camembert en croûte, son cœur en pâte molle voire coulante.

Structure en pinceau de Penicillium Camemberti

On se propose d’observer une spore de Penicillium Camemberti à l’aide d’un microscope dont les caractéristiques sont les suivantes :

- Objectif : lentille L₁, de centre optique O₁, de distance focale f₁ = 4,0 mm ;
- Oculaire : lentille L₂, de centre optique O₂, de distance focale f₂ = 2,0 cm ;
- Intervalle optique Δ de cet instrument est de Δ = F₁F₂ = 16,0 cm ;
- Distance minimale de vision distincte pour un œil normal : dₘ = 25 cm ;
- Grossissement commercial du microscope : Gₚ = \frac{Δ \times dₘ}{f₁ \times f₂} = \frac{θ}{θ}.

Données :

Pouvoir de résolution de l’œil : θₒₘ = 3.10⁻⁹ rad
Indice de réfraction de l’air : nₑₐᵣ = 1,00

1 - La spore de Penicillium Camemberti à observer sera notée AB dans la suite de l’exercice.
1-1 - Quelle doit être la position de l’image intermédiaire A’B’, de l’objet AB, donnée par L₁, pour qu’un observateur puisse observer l’image définitive A’B’ à l’infini ?
1-2 - Quelle est la nature de l’image intermédiaire A’B’ ? Préciser ses caractéristiques.
1-3 - Faire un schéma clair du microscope, sans soucis d’échelle, représentant la situation proposée ci-dessus.

2 - Calculer la valeur du grossissement commercial Gₚ du microscope.

3 - Calculer l’angle θ sous lequel on voit à l’œil nu une spore de Pénicillium Camemberti située à 25 cm de l’œil. Faire un schéma simple permettant d’expliquer votre démarche.
4 - Calculer l’angle θ sous lequel on voit cette même spore à travers le microscope.

5 - Comparer θ et θ₀ au pouvoir de résolution de l’œil humain puis conclure.

6 - Le pouvoir de résolution d’un microscope est limité par le phénomène de diffraction. La dimension AB_{min} du plus petit objet observable est donnée par la relation :

$$AB_{min} = \frac{0.61 \times \lambda}{2 \times n \times \sin \theta}$$

λ: longueur d’onde de la radiation utilisée (en m)

$n \times \sin \theta$: ouverture numérique de l’objectif

6-1 - Calculer la dimension AB_{min} lorsque l’objet est dans l’air, la longueur d’onde de la lumière utilisée étant $\lambda = 555.0$ nm et l’angle θ valant 60°.

6-2 - Est-il possible d’observer la spore de Penicillium camemberti à travers le microscope utilisé ? Justifier la réponse.

6-3 - Les grandeurs u et λ étant maintenues constantes, justifier l’utilisation d’un bain d’huile afin d’améliorer ce pouvoir séparateur ?

B : SPECTROPHOTOMÉTRIE (15 points)

La liqueur de Dakin a été mise au point lors de la première guerre mondiale pour soigner les plaies infectées des soldats. Elle constitue un antiséptique efficace encore commercialisé de nos jours.

Parmi les différents constituants de la liqueur de Dakin, on trouve l’hypochlorite de sodium qui en est le principe actif ainsi que le permanganate de potassium qui sert à le stabiliser tout en lui donnant sa couleur rose. La concentration en permanganate de potassium dans la liqueur de Dakin est égale à 10 mg.L⁻¹.

Dans cet exercice, on contrôle par une méthode spectrophotométrique la concentration en permanganate de potassium d’une solution commerciale de liqueur de Dakin ouverte depuis plusieurs semaines.

Le spectrophotomètre utilisé comporte une source de lumière monochromatique et un réseau détecteur à 10⁻² traité par mètre. Il est muni d’une cuve de longueur égale à 1 cm.

Données :

Longueurs d’onde dans le spectre visible :

<table>
<thead>
<tr>
<th>Couleur</th>
<th>VIOLET</th>
<th>BLEU</th>
<th>VERT</th>
<th>JAUNE</th>
<th>ORANGE</th>
<th>ROUGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longueur d’onde (nm)</td>
<td>380</td>
<td>450</td>
<td>495</td>
<td>590</td>
<td>620</td>
<td>750</td>
</tr>
</tbody>
</table>

- Masse molaire du permanganate de potassium KMnO_4 : $M(\text{KMnO}_4) = 158.0$ g.mol⁻¹
- Coefficient d’absorption linéique molaire du permanganate dans l’eau à 25 °C pour $\lambda = 525$ nm : $\varepsilon = 225$ mol⁻¹.m⁻¹

1 -

1-1 - Donner l’expression littérale de la relation traduisant la loi de Beer-Lambert et expliciter chacune des grandeurs.

1-2 - Préciser pour chaque grandeur son unité dans le système international.

2 - Indiquer le rôle du réseau présent dans le spectrophotomètre.

3 - Justifier le choix d’une longueur d’onde λ de travail du spectrophotomètre égale à 525 nm.

4 - La mesure de l’absorbance A de la liqueur de Dakin est égale à 0,103. En déduire la valeur de la concentration molaire en permanganate de potassium de la solution commerciale.

5 - Montrer que la concentration massique en permanganate de potassium de la solution testée vaut $C_m = 7.24$ mg.L⁻¹.
6-1 - Calculer l’écart relatif en % entre la valeur de la concentration massique en permanganate de potassium donnée à la question 5 et celle attendue.
6-2 - Commenter le résultat obtenu à la question 6-1 et proposer une interprétation.

C : THERMOCHIMIE (15 points)

En 1909, le chimiste allemand Fritz Haber réussit à synthétiser de l’ammoniac gazeux par réaction du diazote gazeux sur le dihydrogène gazeux. Cette synthèse, réalisée à T = 450°C avec un catalyseur à base de fer, a pour équation : \(\text{N}_2\text{g} + 3 \text{H}_2\text{g} \rightarrow 2 \text{NH}_3\text{g} \).

La synthèse de l’ammoniac a eu une importance capitale car elle a permis la production à grande échelle d’engrais azotés permettant de nourrir une population mondiale toujours croissante. Fritz Haber reçut ainsi le prix Nobel de chimie en 1918.

Cet exercice propose de montrer que cette réaction est thermodynamiquement possible et de comprendre le choix de la température utilisée pour cette synthèse.

Données :

- Enthalpies standard de formation et entropies standard absolues de certains composés à la température \(T = 298 \, \text{K} \).

<table>
<thead>
<tr>
<th>Composés</th>
<th>(\Delta G^\circ) (kJ.mol(^{-1}))</th>
<th>(S^\circ) (J.mol(^{-1}).K(^{-1}))</th>
<th>(H^\circ) (kJ.mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2\text{g})</td>
<td>0</td>
<td>191.5</td>
<td>0</td>
</tr>
<tr>
<td>(3 \text{H}_2\text{g})</td>
<td>0</td>
<td>130.6</td>
<td>0</td>
</tr>
<tr>
<td>(2 \text{NH}_3\text{g})</td>
<td>- 46.19</td>
<td>192.5</td>
<td>0</td>
</tr>
</tbody>
</table>

- Constante des gaz parfaits : \(R = 8.314 \, \text{J.K}^{-1}.\text{mol}^{-1} \).

1 -

1-1 - Exprimer puis calculer l’enthalpie standard de réaction, notée \(\Delta G^\circ \), de la réaction de synthèse de l’ammoniac à la température \(T = 298 \, \text{K} \).

1-2 - La réaction est-elle endothermique ou exothermique à cette température ? Justifier la réponse.

2 -

2-1 - Exprimer puis calculer l’entropie standard de réaction, notée \(\Delta S^\circ \), de la réaction de synthèse de l’ammoniac à la température \(T = 298 \, \text{K} \).

2-2 - Montrer qu’il était possible, à partir de l’équation-bilan de la réaction, de prévoir le signe de l’entropie standard de réaction \(\Delta S^\circ \).

3 -

3-1 - Montrer que l’enthalpie libre standard de réaction, notée \(\Delta G^\circ \), de la réaction de synthèse de l’ammoniac à la température \(T = 298 \, \text{K} \) est égale à \(-3329.10^4 \, \text{J.mol}^{-1} \).

3-2 - Dans les conditions standard, la réaction est-elle thermodynamiquement possible ou thermodynamiquement impossible ? Justifier la réponse.

3-3 -

3-3-1 - Exprimer et calculer la valeur de la constante d’équilibre, notée \(K \), associée à la réaction de synthèse de l’ammoniac à \(298 \, \text{K} \).

3-3-2 - La valeur trouvée est-elle en accord avec la réponse à la question 3-2 ? Justifier la réponse.

4 -

4-1 - Quelle est l’influence d’une augmentation de pression sur l’équilibre étudié ? Justifier la réponse.
4-2 - Faut-il augmenter ou abaisser la température pour favoriser la réaction dans le sens direct ? Justifier la réponse.
4-3 - Expliquer alors le choix d'une température T = 450°C pour effectuer la synthèse de l'ammoniac.

D : PRÉPARATION DE LA PROCARBAZONE (15 points)
La Procarbazine est le principe actif d'un médicament qui détruit ou empêche la prolifération des cellules cancéreuses. Ce composé, dérivé de la méthylhydrazine, comporte un noyau benzénique et une fonction amide.
Dans cet exercice, on étudie quelques étapes de la synthèse de ce composé afin d'en déterminer la formule semi-développée.

Étape n° 1 :
Au cours de cette étape, il se forme un composé (A). La réaction mise en jeu a pour équation :

\[
\begin{align*}
\text{CH}_2\text{Cl} & \xrightarrow{\text{AlCl}_3} (A) + \text{HCl} \\
\end{align*}
\]

1-1 - Donner la formule semi-développée de la molécule (A) et la nommer.
1-2 - Préciser le rôle joué par le trichlorure d'aluminium AlCl₃ au cours de cette réaction.
1-3 - Proposer un mécanisme réactionnel pour cette substitution électrophile.

Étape n° 2 :
Le composé (A) obtenu lors de l'étape n° 1 réagit avec le monoxyde de carbone pour donner un mélange de deux composés isomères appelés (B) et (B'). L'isomère (B) est obtenu majoritairement selon l'équation :

\[
\begin{align*}
(A) + \text{CO} & \xrightarrow{\text{HCl} + \text{AlCl}_3} \text{H}_2\text{C}-\text{C}=\text{O} + \text{HCl} \\
(B) & \\
\end{align*}
\]

Le monoxyde de carbone en présence de chlorure d'hydrogène et de trichlorure d'aluminium réagit comme le chlorure de méthanolyle.

2-1 - Donner la formule semi-développée du chlorure de méthanolyle.
2-2 - Justifier l'existence des deux composés isomères (B) et (B').
2-3 - Donner la formule semi-développée de la molécule (B').

Étape n° 3 :
Le composé (B) obtenu lors de l'étape n° 2 réagit avec le dichromate de potassium en milieu acide pour donner un composé (C) selon le schéma réactionnel ci-dessous :

\[
\begin{align*}
\text{H}_2\text{C}=\text{C}-\text{OH} & \xrightarrow{\text{Cr}_2\text{O}_7^{2-} + \text{H}^+} \text{H}_2\text{C}=\text{C}-\text{COOH} \\
(B) & \xrightarrow{\text{C}} \text{(C)} \\
\end{align*}
\]

3-1 - Écrire les demi-équations électrochimiques des deux couples rédox intervenant, puis l'équation-bilan de la réaction. On rappelle que le couple Cr₂O₇²⁻/Cr³⁺ est mis en jeu.
3-2 - Nommer le composé (C) en utilisant les règles de la nomenclature officielle.
Étape n° 4:
Le composé (C) est transformé en un composé (D) selon le schéma reactionnel ci-dessous :

4 - Donner la formule et le nom d’un réactif permettant de réaliser cette transformation.

Étape n° 5:
Le composé (D) obtenu lors de l’étape n° 4 réagit avec le dichlore Cl₂ en présence de lumière pour donner le composé (E). La réaction mise en jeu a pour équation :

5 - Choisir, parmi les termes qui suivent, celui (ou ceux) qui caractérise(nt) la réaction étudiée :
- addition - élimination - substitution - nucléophile - électrophile - radicalaire.

Étape n° 6:
Le composé (E) obtenu lors de l’étape n° 5 réagit avec l’isopropyamine pour donner le composé (F) selon le schéma reactionnel suivant :

6-1 - Donner la formule semi-développée de l’isopropyamine.
6-2 - Nommer la nouvelle fonction contenue dans le composé (F).

Étape n° 7 - Fin de la synthèse :
Les dernières étapes de la synthèse étudiée sont les suivantes :

BTS BIOANALYSES ET CONTRÔLES
Nom de l'épreuve : Sciences physiques et chimiques Code : BAE2PC
Session 2014
Page : 6/7
La dernière étape de la synthèse est une réaction d'hydrogénation qui conduit à la Procarbazine :

\[
\begin{align*}
\text{Procarbazine} &
\end{align*}
\]

7 - Donner la formule semi-développée de la Procarbazine.