BREVET DE TECHNICIEN SUPERIEUR HYGIENE – PROPRETE –ENVIRONNEMENT

SESSION 2010

Durée : 5 heures Coefficient : 4

- SUJET -

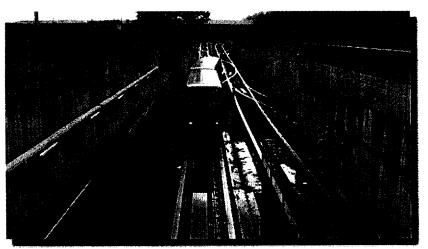
ANALYSE ET TECHNOLOGIE DES SYSTEMES

Dès l'ouverture du sujet assurez vous qu'il est complet. Aucun document autorisé.

Matériel autorisé:

- Calculatrice de poche alphanumérique ou à écran graphique à fonctionnement autonome sans imprimante conformément à la circulaire n°99-186 du 16/11/1999.

Ce sujet comprend 3 parties indépendantes qui seront traitées sur des copies séparées. Les documents-réponses repérés de REP 1/14 à REP 14/14 (y compris ceux inutilisés), sont à rendre avec les copies.


Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 26 pages numérotées de 1/26 à 26/26

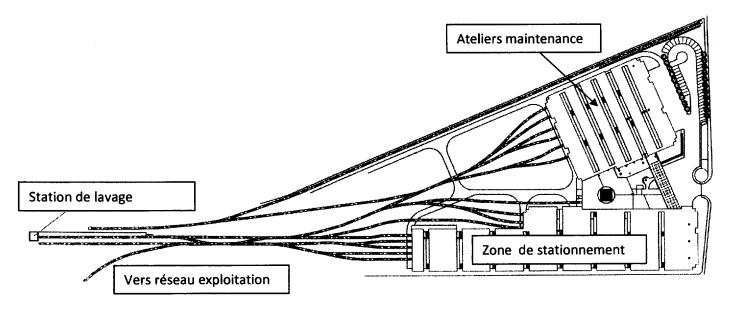
	BTS HYGIENE PROPRETE ET ENVIRONNEMENT	
Session 2010	Analyse et Technologie des Systèmes	HPATS
Coefficient : 4	Durée : 5 heures	Pages 1/26

HPATS .

STATION DE LAVAGE DES RAMES DE METRO PML75

RESEAU TRANSPORT EN COMMUN LYONNAIS LIGNE D

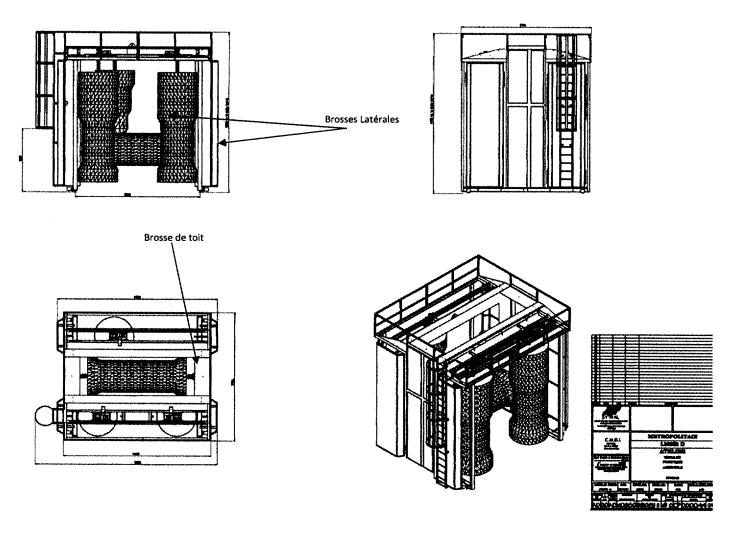
Constitution du dossier


		Pages	Durées conseillées	Barème (Indicatif)
0	Présentation du système	3/26	0h20	
0	Etude électrotechnique	5/26	0h50	15
0	Etude mécanique-hydraulique	13/26	2h30	40
0	Etude de maintenance	22/26	1h20	25

PRESENTATION

L'unité maintenance métro.

La ligne de métro D de la Ville de Lyon est la première ligne de métro en France sans conducteur. Composée de 38 rames de 4 wagons chacune, 29 rames sont en service simultanément. De nombreux équipements sont nécessaires à l'exploitation de cette ligne et notamment le centre de maintenance et d'entretien du Thioley à Vénissieux. Ce centre comporte entre autre une station de lavage automatique permettant le nettoyage des rames toutes les 35h d'exploitation.


La structure du centre du Thioley se décompose suivant le plan ci-dessous.

La gestion informatisée permet de connaître précisément la date à laquelle une rame doit être entretenue et conduite vers le portique de lavage PML75. Voici le descriptif global du déroulement d'un cycle :

- Appel depuis la station de lavage : permet de lancer automatiquement l'envoi depuis la zone de stationnement d'une rame composée de 2 wagons.
- Arrivée et positionnement à l'aide de détecteurs photoélectriques (1 cellule d'entrée, 2 cellules d'arrêt)
- Coupure de l'alimentation électrique du rail pour des mesures de sécurité.
- Lancement du cycle de nettoyage :
 - Prélavage avec de l'eau brute.
 - Lavage avec de l'eau chaude additionnée de détergent.
 - Rinçage avec de l'eau adoucie.
 - Remise en énergie de la rame.
- Evacuation vers le centre de maintenance et d'exploitation.

Présentation du Portique de lavage PML 75

L'ensemble est constitué de 4 brosses :

- trois brosses latérales.
- une brosse de toit.

Le portique se déplace le long des rails par l'intermédiaire de quatre moteurs hydrauliques entrainant chacun une roue. Le mouvement de translation, de chaque brosse latérale, est réalisé par un moteur hydraulique associé à un système de transmission pignon crémaillère. Le mouvement de translation verticale de la brosse de toit, est assuré par un moteur-frein et un système de chaînes.

Chaque brosse est entrainée en rotation par un moteur hydraulique.

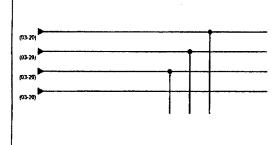
2 - Etude ELECTROTECHNIQUE

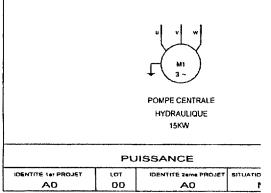
Total: 15 pts

Problématique : Les utilisateurs de l'installation ont transmis au service de maintenance divers problèmes de fonctionnement observés sur l'installation électrique de la station de lavage PML75. Il vous est demandé d'étudier et de remédier aux problèmes rencontrés en effectuant un nouveau choix des matériels à mettre en œuvre.

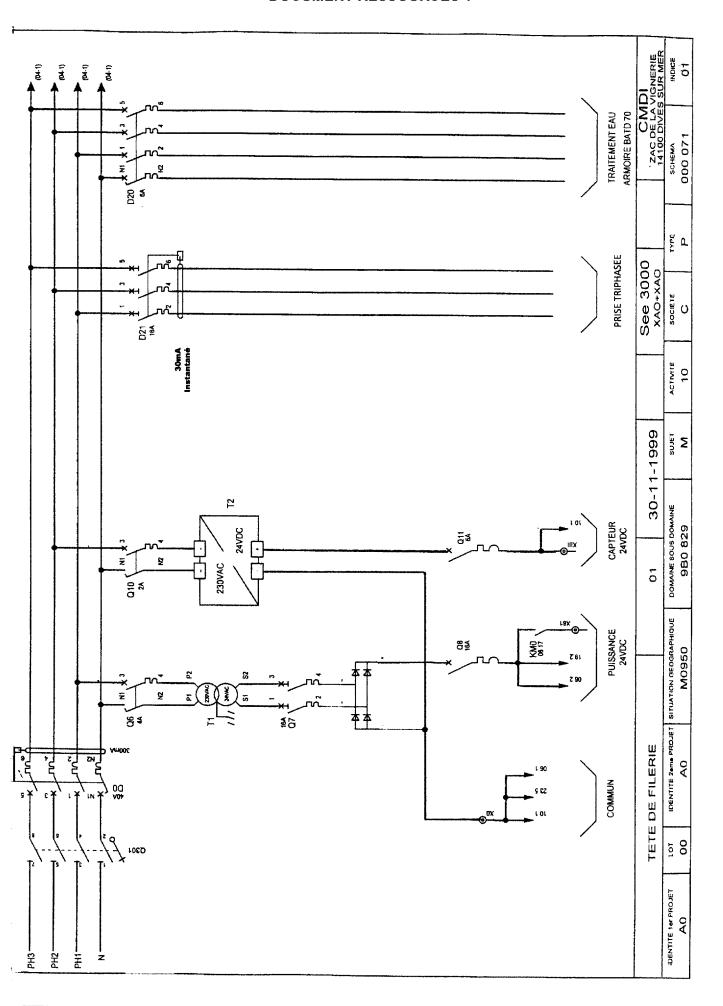
Données techniques

- o Réseau électrique : 400V triphasé +neutre
- o Neutre raccordé à la terre.

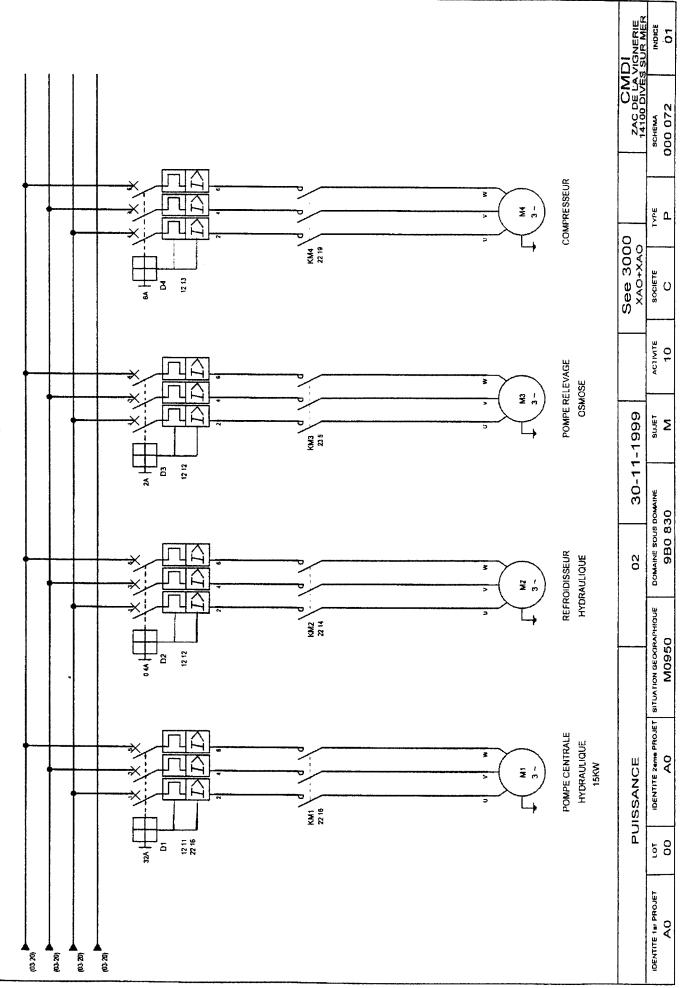

Récepteurs	Caractéristiques
Moteur M1 : Pompe centrale hydraulique	15 kW ; 230/400V ; Cos φ = 0,84 ; η =0,85, démarrage direct
Moteur M2 : Refroidisseur hydraulique (ventilateur)	2 kW ; 230/400V ; Cos $φ$ = 0,80 ; $η$ = 0,79 démarrage direct
Moteur M3 : Pompe relevage osmose	4 kW; 230/400V; Cos φ = 0,77; η= 0,81 démarrage direct
Moteur M4 : Compresseur	8kW; 230/400V; Cos ϕ = 0,82; η = 0,82 démarrage direct
Autres récepteurs (doseurs détergents, prises, automate)	Puissance absorbée négligeable.


Q1- A partir des documents re justifier la nature du schéma d		s données techniques données en nstallation.	page 5, indiquer et
Situation n°1 : On observe lo le document ressource 1, un o		u récepteur raccordé sur la prise tri s disjoncteurs D21 et D0.	phasée mentionnée sur
Q2- Quel est le niveau de sélé schéma du document ressour		tifier votre réponse à l'aide des inf quences d'une telle situation ?	ormations fournies sur le
Q3- Quelle fonction compléme	entaire doit comporter D0 po	ur assurer une sélectivité totale ?	
Q4 – Choisir dans le documer totale de l'installation au nivea		érentiel à associer à D0 permettar ts d'isolement.	nt d'assurer une sélectivité
<u> </u>			
		ment de l'installation il a été ob 32A, courbe C) lors du démarra	
Q5- Donner une raison probal	ole du déclenchement de cer	appareil de protection.	
Q6- Calculer le courant absort	pé par le moteur M1 lors de s	son fonctionnement à puissance n	ominale.
Q7- Choisir dans la document référence.	ation constructeur 2 le nouve	eau disjoncteur D1dans la gamme	C60. Donner sa
HPATS	Page 6	sur 26	

Situation n°3 : Afin de remédier au problème de la situation n°2, le choix se porte finalement sur un démarreurralentisseur progressif afin d'éviter les à-coups et limiter les efforts mécaniques au démarrage.


Q8- Choisir dans la documentation constructeur 3 le matériel adapté. Donner sa référence complète.

Q9- Compléter le schéma ci- dessous afin de réaliser le schéma de puissance de l'installation à modifier en implantant le démarreur ralentisseur progressif (partie puissance uniquement).



Q10- La fonction ralentisseur est-elle justifiée au regard de l'utilisation de ce moteur ?

HPATS

Système Prodis Protection "tête de groupe" Disjoncteurs DT40 et DT60

Choix des courbes de déclenchement Courbe C: applications générales.

Courbe B: cábles grande longueur, récepteurs sensibles.

Courbe D: récepteurs à forts courants d'appel.

+	
DT40 1P+N	Vigi TG40

Vigi TG40

Disjoncteurs W		DT40 5 KA (1)			DT40N 10 kA (2)	
In	anlihan 283	courbes			courbes	D
iargeur en pas de 9 mm	calibre (A)	ľ	В	D		U
uni + neu	tre	•			,	
2	1	21019	•	-	21360	21371
		14444			1	

1	21019			21360	21371
2	21020	•	•	21361	21372
3	21021	*	*	21362	-
4	21022	•	*	21363	21373
6	21023	21009	*	21364	21374
10	21024	21010	+	21365	21375
16	21025	21011	+	21366	21376
20	21026	21012	•	21367	21377
25	21027	21013	•	21368	21378
32	21028	21014	-	21369	21379
40	21029	21015		21370	21380

•	~	1-1
	10	21064
	16	21065
	20	21066
	25	21067
	32	21068
	40	21069
(1) Pouvoir de coupure	:	***************************************
tension (V CA)		PdC
seion NF EN 80947-2		icu .
230 à 240		
uni + neutre		6 kA
tri + neutre		10 kA
400 à 415		
uni + neutre		2 kA (*)
tri + neutre		6 KA
seion NF EN 60698		ien
230 uni + neutre		4500 A
400 tri + neutre		4500 A

21063

21079	21410	21420
(2) Pauvoir de coupure	1 (
tension (V CA)		PdC
seion NF EN 60947-2		lcu
230 à 240		
uni + neutre		10 kA
tri + neutre		15 kA
400 à 415		
estyen + inu		2 kA (*)
tri + neutre		10 kA
seion NF EN 60898		Itn
230 uni • neutre		5000 A
400 to + neutre		5000 A
(*) Sous 1 pàle en régi (cas du délaut double)		i r

21404

21405

21407

21408

21409

21414

21415 21416

21417 21418

21419

^(*) Sous % pôle en régime de neutre iT (cas du défaut double).

Blocs di	ifférentiels	tête	de gi	roupe"	' Vigi 1	rG40 €	N.
calibre sensibilité (mA)	tension (V CA 50 Hz)	type AC	pas de 9 mm	type A s super im		type A S Special i Externe	
uni + ne	utre	i er.	9 11961	i or	(1611)	gen.	2 (11(1)
25 Å instan							
30	230	21480	2	21484	2	20217	2
300	230	21481	2	21485	2		-
40 A instan	tené (5)			1		•	
30	230	21482	2	21486	2	20218	2
300	230	21483	2	21487	2	-	•
40 A sélect	if 🖫 (5)	•				•	
300 🗓 sélectif	230	1-	•	21489	2	20220	2
tri + neu	itre			1			

300 Selectif 230 à 415 (5) Les blocs différentiels sont équipés d'un détrempeur empéchant le montage d'un Vigi TG40 de calibre inférieur au calibre du dejancteur associé. Le montage d'un Vigi TG40 de calibre supéneur au calibre du déjancteur est toujours possible.

21494

21495

21496 21497

21499

21490

21491

21493

Peignes de raccordement Prodis

21073

21074

21075

21076

21077

21078

type	pas	quantité	réf.		
	de 9 mm	protèges-dents	flasques		
1P+N	24	6	4	21086	
	48	12	4	21088	
	96	*	•	21089	
3P+N	24	6	4	21090	
	48	12	4	21092	
	96	*	•	21093	
tot de 4 cc	onnecteurs ons	25 mm²		21098	

Tous les peignes voir page

Auxiliaires électriques compatibles

type		largeur en pas de 9 mn	tension 1	réf.
déciencheurs	MN	2	230 V CA	26960
			48 V CA/CC	25981
	MN®	2	230 V CA	26963
	MNx	2	230 V CA	26969
			380415 V CA	25971
	MSU	2	230 V CA	26979
	MX+QF	2	110415 V CA	26946
			110130 V CC	
			48 V CA/CC	26947
			1224 V CA/CC	25948
contacts	OF	1		26924
zerisilixus	SD	1		26927
	OF+SD/OF	1		25929

Toute l'information voir page

25 A instantané (5)

40 A instantané (5)

40 A sélectif (\$) (5)

230 à 415

230 à 415

230 à 415

230 à 415

30 300

300

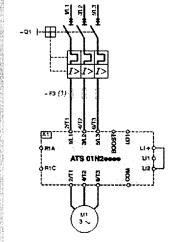
20275

20278

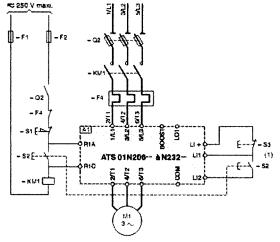
Disjoncteurs et Interrupteurs jusqu'à 160 A Disjoncteurs C60 Bi, tri et tétra

hoix des courbes de décienchement purbe C : applications générales. ourbe B : cábles grande longueur, cepteurs sensibles. ourbe D : récepteurs à forts courants d'appel	Disjoncteurs	C60N 10 kA (1)			C60H 15 kA (2)	25 kA (4 20 kA (3	i 25 A) 12-40 A) 50-63 A) (3)		
ourbe Z : protection de circuite électroniques		C	8	D.	C	C	В	Z	К
ourbe K : commande et protection de circuits	는 그 사람에 살린다	15 17 18	Table 1		dian'				
ipédants (moteurs)	largeur en pas calibre de 9 mm (A)	1.1			La series				
	Bi	•		1.5	1 - 1	1.			
					lasasa	1			
	4 <u>0,5</u> 0,75	24060	<u>. </u>	24494	24845	25407	•	•	•
ું'∌` ' '`	1	24196	.	24580	24846	25418		· ·	25478
	1,6	1.7170	*					26154	25479
₹	2	24197	•	24581	24847	25419		26155	25480
: [토(길) · · · ·	3	24198	*	24582	24848	25420	•	26157	25481
	4	24199	•	24583	24849	25421	•	26158	25482
3.0	6	24200	•	24584	24850	25422	25357	26159	25483
	10	24201	23941	24586	24851	25423	25358	26161	25485
0 2P Vigi C60	16	24202	23942	24587	24852	25424	25359	26163	25486
3 2 3	20	24203	23943	24588	24853	25425	25350	26164	25487
<u> </u>	25	24204	23944	24589	24854	25426	25361	26165	25488
TTPT	32	24205	23945	24590	24855	25427	25362	26166	25489
5 1	40 50	24208	23946	24591	24856	25428	25363	26167	25490
1 1 1	5 <u>0</u> 63	24207 24208	23947 23948	24593 24594	24857 24858	25429 25430	25364 25365	:	-
		12-12-04			127000	120730	27303		
	Tri								
	6 0.5	24062		24495	<u> -</u>	25408			•
	0,75	24063	•	•		-	•	•	•
· ·	1	24209	•	24595	24859	25431		-	25496
· · · · · · · · · · · · · · · · · · ·	1,6	ļ	•	•		-	•	26174	25497
' E	2	24210		24596	24850	25432	•	26175	25498
	3	24211	-	24597	24861	25433		26177	25499
	<u>4</u> 6	24212	•	24598	24862	25434 25435		26178	25500
(7) (a) (4)	10	24214	23954	24599 24601	24853 24864	25435	25370 25371	26180 26182	25501 25503
100	16	24215	23955	24602	24855	25437	25371	26184	25504
0 3P Vigi C60	20	24216	23956	24603	24866	25438	25373	26185	25505
	25	24217	23957	24604	24867	25439	25374	26224	25506
た。	32	24218	23958	24605	24868	25440	25375	26225	25507
\$\$ \! \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	40	24219	23959	24606	24869	25441	25376	26226	25508
rr III	50	24220	23960	24608	24870	25442	25377		•
	63	24221	23961	24609	24871	25443	25378	•	*
	Tétra								
	8 0.5	24064		24496	I -	25409			
	0.75	24065	-		-	1.	-	*	•
(6	1	24222	•	24610	24872	25444		•	25514
The second second	1,8	<u> </u>	•	•	-	-	*	26232	25515
@ F - +	2	24223	•	24611	24873	25445	•	26234	25516
	3	24224	*	24612	24874	25448	•	26236	25517
	4	24225		24613	24875	25447	*	26237	25518
7000	6	24226		24614	24876	25448	25383	28239	25519
् । भूभार्थ । । । । । । । । । । । । । । । । । । ।	10	24227	23987	24616	24877	25449	25384	26241	25521
0 4P Vigi C60		24228	23968	24517	24878	25450	25385	26242	25522
ili _iili_	20 25	24229 24230	23969 23970	24518	24879	25451	25386	26243	25523
14. LAHTE	32	24231	23971	24519 24520	24880 24881	25452 25453	25387 25388	26244 26245	25524 25525
555 THHE	40	24232	23972	24621	24882	25454	25389	25246	25525
}}} ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	50	24233	23973	24623	24883	25455	25390	,	*
4 * * * * * * * * * * * * * * * * * * *	63	24234	23974	24524	24884	25458	25391		•
ouvoir de coupure :	(2) Pouvoir de coupure			·····		ouvoir de			
sion (V CA) PdC	tension (V CA)		Pd		cal	bre	tension (V	CA)	PdC
n NF EN 60947-2 icu 4 240 20 kA	seion NF EN 80947-2 230 à 240		30			n NF EN 6			EO LA
à 415 10 kA (*)	400 à 415		15	kA (*)	U,5 i	à 25	230 à 240 400 à 415		50 kA 25 kA
n NF EN 60898 Icn	440		10	kA			440	*********	20 kA
9000 A 3 kA sous 1 pôle en régime de neutre (T	selon NF EN 80898 400	·····	ion 101	000 A	32 8	40	230 à 240		40 kA
A restrong to bring entropying and independ ()	(°) 4 kA sous : pde en	rénime de na		FX 7. C.			400 8 415 440		20 kA 15 kA
s du délaut double).	() 4 KA BOOB : DOR en					****			
t du délaut double).	(cas du défaut double).				50 à	63	230 à 240		30 kA
u délaut double).					50 à	63	230 à 240 400 à 415 440		30 kA 15 kA 10 kA

DOCUMENT CONSTRUCTEUR 3


Démarreurs-ralentisseurs progressifs Altistart 01

Démarreurs


encombrements		(LxHxPenmm)	Démarraure	de 0,37 à 15 l	VM NOTADA		
ATS01N10300		22.5 x 100 x 100	Demaneurs	ue 0,37 a 15 1	KW ▶605404		
***************************************		45 x 124 x 130					
ATS01N10900			_				
ATS01N222.	N232●●	45 x 154 x 130	Ē				
types de démar	reurs	a sala di Jajara Cala	progressifs	progressifs raientisseul	78		
puissance mote			0,37 à 11 kW	0,75 à 15 kW			
degré de protec	tion		IP 20	(
	ointes de courant	moteur monophasé	oui		***************************************		
•		moteur triphasé	non (1 phase contrôlée)	oui (2 phases contrôlés	15)		
temps de démar	rage réglable		15 s	110 s	4. 11		
temps de ralenti	ssement réglable		non (arrêt roue libre)	ue libre) qui (110 s)			
couple de décoi	age ajustable		30 80 % du couple di	démarrage du moteur	en direct sur le rèseau	***************************************	
entrées logiques	3			3 entrées logiques (ma	rche, arrêt et boost au de	marrage)	
sorties logiques			•	1 sortie lagique			
sorties à relais			*	1 sortie à relais	***************************************	······································	
	entation contrôle		110 240 V CA ± 10 % 24 V CC ± 10 % In 110480 V CA	interne au démarreur tri 200240 V CA	tri 380415 V CA	ltri 440480 V CA	
puissance mote			BI 110,,,460 V CA	81200240 V CA	01 360415 V CA	81 440460 V CA	
230 V	400 V	courant nominal					
(kW)	(kW)	(icL)					
0,37-0,55	1,1	3 A	ATS01N103FT				
0.75-1,1	2.2	6 A	ATS01N106FT	ATS01N206LU	ATS01N206QN	ATS01N206RT	
1,5	4	9.4	ATSOIN109FT	ATS01N209LU	ATS01N209QN	ATS01N209RT	
2.2	5,5	12 A	ATS01N112FT	ATS01N212LU	ATS01N212QN	ATS01N212RT	
4-5,5	7,5-11	22 A	1.	ATS01N222LU	ATS01N222QN	ATS01N222RT	
3-5,5	7,5-11	25 A	ATSOIN125FT	•	-		
7.5	15	32 A	1.	ATS01N232LU	ATS01N232ON	ATS01N232RT	

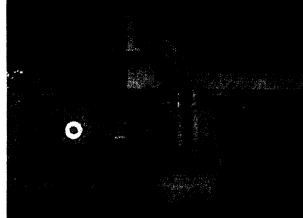
Démarreur progressif ATS01N206ee à N232ee Commande manuelle sans ralentissement avec disjoncteur-moteur GV2 et GV3

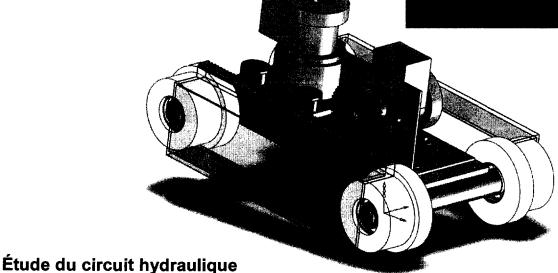
(1) Pourcoordination type 2.

Démarreur-raientisseur progressif ATS01N205ee à N232ee Commande automatique avec ou sans raientissement avec contacteur

(1) Au-dois de 1 in utiliser des fils blindés

3 - Etude MÉCANIQUE-HYDRAULIQUE


Total: 40 pts


Brosses latérales

On s'intéresse dans cette partie au sous-ensemble permettant le mouvement des brosses latérales. Ce sous ensemble comporte essentiellement deux chariots – se déplaçant vers la droite ou vers la gauche – sur lesquels sont montées les brosses.

Chaque chariot comporte un moteur hydraulique assurant la rotation de la brosse et un moteur hydraulique assurant le déplacement latéral. Ce dernier moteur dont la cylindrée est égale à 100 cm³, entraîne directement un pignon avec une crémaillère.

La vitesse de déplacement optimale, conduisant à un nettoyage efficace sans endommager la peinture est égale à 0,07 m/s.

Le schéma hydraulique de l'alimentation des moteurs de déplacement latéral est représenté sur le document réponse REP7. Les deux distributeurs – qui sont identiques – doivent permettre de faire avancer les chariots vers la droite, vers la gauche et, bien sûr, de les immobiliser.

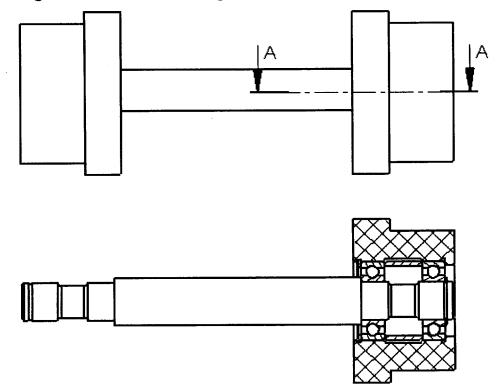
Q11) Rajouter, sur le schéma hydraulique du document réponse REP7, les deux distributeurs dans les zones délimitées par des pointillés. La commande V_{0G} fait tourner le moteur latéral gauche dans le sens horaire et la commande V_{0D} doit faire tourner le moteur latéral droit dans le sens anti horaire.

Q12) Surligner, sur le schéma hydraulique du document réponse REP7, le passage du fluide sous pression lorsque le sens de l'écoulement est celui indiqué par les flèches (les électrovannes V_{1D} et V_{1G} étant commandées).

Q13) Quelle relation lie les débits Q₁, Q₂ et Q?

convocation ou la liste u appeil

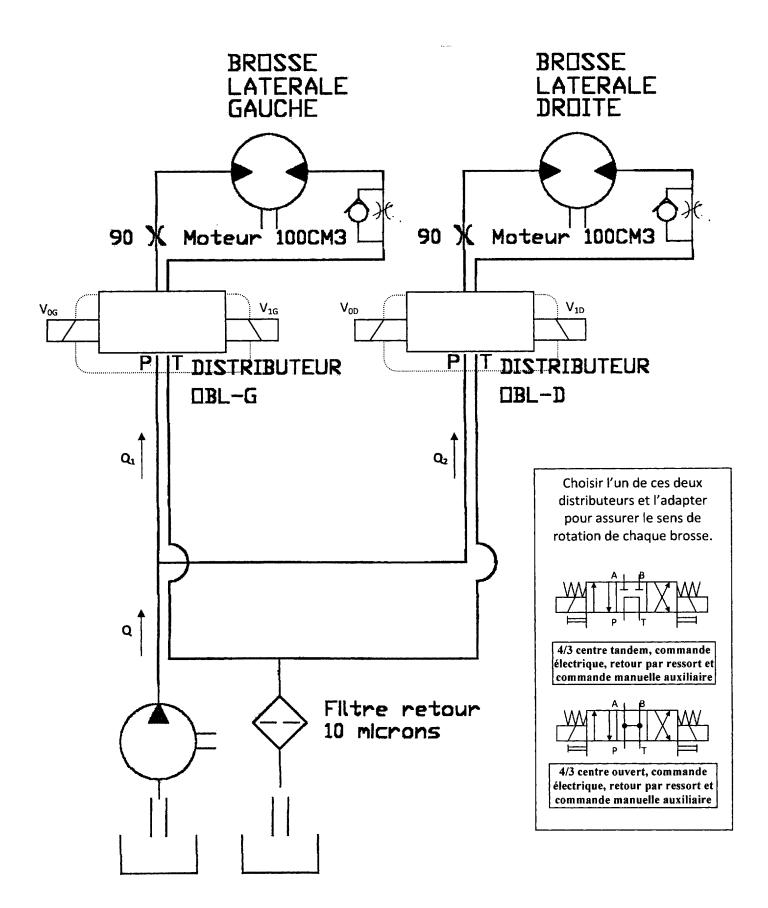
Étude du système pignon-crémaillère Q14) Quelle relation existe-t-il entre la vitesse de rotation du moteur ω, le diamètre primitif du pignon dp et la vitesse de déplacement du chariot v ? Répondre en précisant les unités. Q15) Quelle relation existe-t-il entre le diamètre primitif du pignon dp, son nombre de dents Z et le module des dents Q16) Le nombre de dents Z est égal à 42 et le module des dents m est égal à 1,5. Calculer le diamètre primitif du pignon. Q17) Calculer la vitesse de rotation ω du moteur. Q18) Quelle relation existe-t-il entre la vitesse de rotation ω du moteur et sa fréquence de rotation N ? Répondre en précisant les unités. Q19) Calculer la fréquence de rotation N du moteur.


Détermination du débit d'huile nécessaire

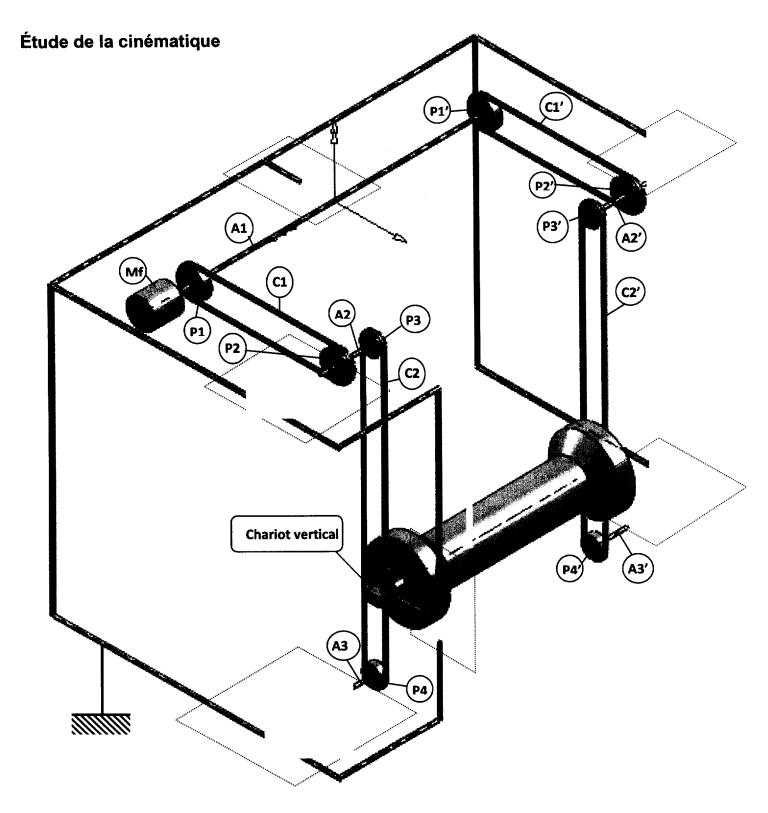
Q20) Quelle relation existe-t-il entre la fréquence de rotation N du moteur, sa cylindrée Cyl et le débit d'huile Q1 qui l'alimente ? Répondre en précisant les unités.

Q21) Pour un bon fonctionnement, on impose une fréquence de rotation de 21 tr/min. Déterminer le débit d'huile alimentant le moteur. Détailler vos calculs et préciser les unités.

Q22) En étudiant le schéma hydraulique du document réponse REP7, indiquer sur quels éléments il faut agir pour obtenir le débit calculé précédemment.


Étude du montage de roulements des galets lisses du chariot

COUPE A-A


REP 6/14

Q23) Indiquer le type de roulements utilisés pour le guidage du galet lisse sur l'arbre.
Q24) Quels types de charges peuvent supporter ces roulements ?
Q25) Dans un montage de roulement, l'une des bagues (bague intérieure ou bague extérieure) est montée serrée et l'autre (bague intérieure ou bague extérieure) est montée glissante. Dans le cas du guidage du galet lisse, quelle est la bague montée serrée ? Quelle est la bague montée glissante ?
Bague montée serrée ?
Bague montée glissante ?
Justification :
Q26) Comment sont calées axialement les bagues intérieures ? Comment sont calées axialement les bagues extérieures ?
Bagues intérieures calées par :
Bagues extérieures calées par :
Q27) Quel type de lubrification préconisez-vous ?

Brosse de toit

On s'intéresse maintenant au sous ensemble de brossage du toit représenté ci-dessous. Il comporte une brosse de grande longueur animée d'un mouvement de rotation autour de son axe. Cette brosse se déplace en translation rectiligne dans la direction verticale. Le mouvement de translation est engendré par un moteur hydraulique Mf – ayant une fréquence de rotation égale à 13,4 tr/min – faisant tourner l'arbre A1. Celui-ci est en liaison complète avec deux pignons P1 et P1'. Ces deux pignons transmettent le mouvement de rotation, grâce à deux chaînes C1 et C1', aux deux pignons P2 et P2' en liaison complète avec les arbres A2 et A2'. Ces arbres sont également en liaison complète avec deux pignons P3 et P3' qui transmettent le mouvement à deux chaînes verticales C2 et C2'. Le chariot vertical est accroché aux deux extrémités de chacune des chaînes C2 et C2'.

Q28) Quels sont les mouvements possibles de l'arbre A1 par rapport au bâti ? Quel est le nom de la liaison cinématique entre l'arbre A1 et le bâti ?
Mouvements possibles de l'arbre A1 par rapport au bâti :
Nom de la liaison arbre A1 – Bâti :
Nonit de la maison ansie / 12 - San 1
Q29) Quels sont les mouvements possibles des arbres A2, A2', A3 et A3' par rapport au bâti ? Quels sont les noms des liaisons correspondantes ?
Mouvements possibles des arbres A2, A2', A3 et A3 par rapport au bâti :
Nom des liaisons arbres – Bâti :
Q30) Quels sont les mouvements possibles du chariot vertical par rapport au bâti ? Quel est le nom de la liaison
correspondante?
Mouvements possibles du chariot vertical par rapport au bâti
Nom de la liaison chariot vertical – Bâti :
Q31) Compléter le schéma du document réponse REP8 en dessinant les six liaisons déterminées précédemment (zones délimitées par des pointillés). Vous pouvez consulter les symboles des liaisons sur le document ressources 3.
Vitesse de déplacement du chariot vertical
Les pignons P1, P1', P2 et P2' ont 47 dents et un diamètre primitif égal à 138 mm, les pignons P3, P3', P4 et P4' ont 34 dents et un diamètre primitif égal à 100 mm.
Q32) Déterminer la fréquence de rotation N2 de l'arbre A2. Répondre en détaillant vos calculs ou votre raisonnement.
Détail des calculs ou du raisonnement :
N2 = tr / min

Page 19 sur 26

HPATS

REP 10/14

Q33) Quelle relation existe-t-il entre la vitesse de rotation ω2 de l'arbre A2 et sa fréquence de rotation N2 ? Répon	dre
en précisant les unités des différents termes.	

 $\omega 2 =$

Unités:

Q34) Quelle relation existe-t-il entre la vitesse de rotation ω2 de l'arbre A2, le diamètre primitif du pignon dp3 et la vitesse de déplacement v de la chaîne C2 ? Répondre en précisant les unités des différents termes.

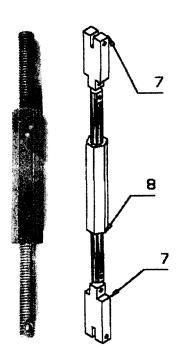
V =

Unités:

Q35) Calculer la vitesse de déplacement de la chaîne C2.

v =

m . s⁻¹


Tension des chaînes C2 et C2'

Il faut retendre les chaînes C2 et C2' tous les ans afin que le positionnement du chariot vertical soit précis. Cette opération est réalisée à l'aide de deux tendeurs, un pour chaque chaîne. Un tendeur est composé de deux tiges filetées, l'une avec un pas à droite, l'autre avec un pas à gauche. Ces deux tiges sont vissées dans un manchon hexagonal. L'extrémité libre de chaque tige est reliée à une chape (7), elle-même reliée à un bout de la chaîne. Le pas des filetages est égal à 1,75 mm. Le rapprochement des deux extrémités des chaînes est approximativement égal à 3 mm.

Q36) Combien de tours de manchon faut-il effectuer pour obtenir ce déplacement ? Répondre en détaillant vos calculs.

Détail des calculs

Nombre de tours du manchon :

DOCUMENT RESSOURCES 3

Nom de la liaison	Translations	Rotations	Degrés de liberté	Principales représentations planes (orthogonales)	Représentation en perspective	Exemple
Encastrement ou liaison fixe	0	0	0	2 / 2 1 1 1 variante 1 variante 2	2	2 soudi
Pivot	0	1	1	variante 1 / variante 2	H2 +2	3
Glissière	1	C	And the second s	1	* 1/2	2
Hélicoïdale			1	11 2 4 filet à droite	2	- The second sec
Pivot glissant	1	1	2		-05	\ \frac{1777}{\frac{1777}{\frac{1}{2777}}}
Spérique ou rotule à doigt	0	2	2	1 2	1 2	1 cannelures bomb
Rotule ou sphérique	0	3	3	12	1 2	
Appui plan	2	1	3	$\frac{\sqrt{2}}{\sqrt{1}}$	2/	
Linéaire rectiligne *	2	2	4	* 2 *	* 2	1020
Sphère cylindre ou linéaire annulaire	A THE COLUMN TO	3	4	* 1 2	0	2 sphère dans cy
Sphère-plan ou ponctuelle	2	3	5	2 × 1, 2	$\langle 0 \rangle$	1 (2)

(*) ancienne normalisation NF E 04-015.

4 - Etude de la MAINTENANCE

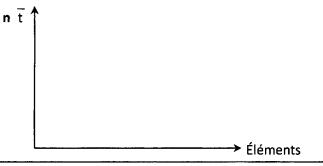
Total: 25 pts

Sur une année, le portique de lavage a nécessité de nombreuses interventions. Nous désirons savoir quels sont les éléments qui posent le plus de problèmes. Les différentes opérations de maintenances ont été répertoriées dans le tableau ci-dessous.

Éléments	Période d'intervention	Temps d'arrêt
Moteur frein	mars	3 h
Moteur BH	avril	2,5 h
Palier BH	mai	2 h
Moteur frein	juillet	1,5 h
Moteur BH	août	3 h
Palier BH	septembre	3 h
Moteur frein	septembre	2,5 h
Palier roue fer	octobre	3 h
Moteur 160	octobre	4 h
Moteur frein	novembre	2 h
Moteur BH	décembre	3 h
Palier BV	décembre	1,5 h
Moteur frein	janvier	2 h
Palier BH	janvier	2,5 h

Q37) Compléter, en classant les éléments du plus pénalisant au moins pénalisant, les deux tableaux ci-dessous.

Éléments	Nombre d'interventions : n


Éléments	Temps d'arrêt : n t

Q38) Tracer le diagramme de Pareto en n sur la figure ci-dessous.

n

→ Éléments

Q39) Tracer le diagramme de Pareto en n	t	sur la figure ci-dessous.

Q40) Que peut-on conclure en analysant les deux diagrammes précédents ?

Nous souhaitons maintenant caractériser plus finement la durée de vie du palier BH. Pour cela, nous disposons de l'historique des opérations de maintenance réalisées sur ce galet. Les temps de bon fonctionnement observés sont les suivants :

52 jours / 74 jours / 34 jours / 65 jours / 90 jours / 46 jours / 110 jours / 58 jours / 70 jours

Q41) En utilisant la table des rangs médians, déterminer la fonction de défaillance F(t) de ce galet et compléter le tableau.

t	F(t)

Q42) Tracer la fonction de fiabilité sur le papier de Weibull du document REP14, en considérant que F(t) est une droite.

Q43) Déterminer les paramètres du modèle de Weibull. Vous laisserez les traits de construction sur le graphique.
γ =
Justification :
β = η =
Ρ '1
Q44) En utilisant les tables de calcul du document ressources 4, calculer la moyenne et l'écart type relatifs au modèle. Répondre en détaillant vos calculs.
m =
σ=
0 -
Q45) Déterminer graphiquement la fiabilité au bout de 40 jours (laisser les traits de construction).
Explications :
R(40) =
(40) =
Q46) Déterminer par le calcul la fiabilité au bout de 40 jours.
Détails du calcul :

DOCUMENT RESSOURCES 4

Table des rangs médians : fonction de défaillance

Ordre de rang i	Taille de l'échantillon : n											
	1	2	3	4	5	6	7	8	9	10		
1	50,000	29,289	20,630	15,910	12,945	10,910	9,428	8,300	7,412	6,697		
2		70,711	50,000	38,573	31,381	26,445	22,849	20,113	17,962	16,226		
3			79,370	61,427	50,000	42,141	36,412	32,052	28,624	25,857		
4				84,090	68,616	57,859	50,000	44,015	39,308	35,510		
5					87,055	73,555	63,588	55,984	50,000	45,169		
6						89,090	77,151	67,948	60,691	54,831		
7							90,572	79,887	71,376	64,490		
8								91,700	82,038	74,142		
9									92,587	83,774		
10										93,303		

Tables de calcul de la moyenne des temps de bon fonctionnement (MTBF) et de l'écart-type d'un modèle de Weibull.

Moyenne = $A\eta + \gamma$

Ecart-type = $B\eta$

		T					l		 	· · · · · ·
β	A	В		β	A	В		β	A .	В
				1,50	0,9027	0,613		4	0,9064	0,254
· ·		- 4	-	1,55	0,8994	0,593		4,1	0,9077	0,249
			l	1,60	0,8966	0,574		4,2	0,9089	0,244
				1,65	0,8942	0,556		4,3	0,9102	0,239
0,20	120	1901		1,70	0,8922	0,540		4,4	0,9114	0,235
0,25	24	199		1,75	0,8906	0,525		4,5	0,9126	0,230
0,30	9,2605	50,08		1,80	0,8893	0,511		4,6	0,9137	0,226
0,35	5,0291	19,98		1,85	0,8882	0,498		4,7	0,9149	0,222
0,40	3,3234	10,44		1,90	0,8874	0,486		4,8	0,9160	0,218
0,45	2,4786	6,46		1,95	0,8867	0,474		4,9	0,9171	0,214
0,50	2	4,47		2	0,8862	0,463		5	0,9182	0,210
0,55	1,7024	3,35	-	2,1	0,8857	0,443		5,1	0,9192	0,207
0,60	1,5046	2,65	ŀ	2,2	0,8856	0,425		5,2	0,9202	0,203
0,65	1,3663	2,18		2,3	0,8859	0,409		5,3	0,9213	0,200
0,70	1,2638	1,85	- 1	2,4	0,8865	0,393		5,4	0,9222	0,197
0,75	1,1906	1,61		2,5	0,8873	0,380		5,5	0,9232	0,194
0,80	1,1330	1,43		2,6	0,8882	0,367		5,6	0,9241	0,191
0,85	1,0880	1,29		2,7	0,8893	0,355		5,7	0,9251	0,188
0,90	1,0522	1,17		2,8	0,8905	0,344		5,8	0,9260	0,185
0,95	1,0234	1,08		2,9	0,8917	0,334		5,9	0,9269	0,183
1	1	1	-	3	0,8930	0,325		6	0,9277	0,180
1,05	0,9803	0,934		3,1	0,8943	0,316		6,1	0,9286	0,177
1,10	0,9649	0,878		3,2	0,8957	0,307		6,2	0,9294	0,175
1,15	0,9517	0,830		3,3	0,8970	0,299		6,3	0,9302	0,172
1,20	0,9407	0,787		3,4	0,8984	0,292		6,4	0,9310	0,170
1,25	0,9314	0,750		3,5	0,8997	0,285		6,5	0,9318	0,168
1,30	0,9236	0,716		3,6	0,9011	0,278		6,6	0,9325	0,166
1,35	0,9170	0,687		3,7	0,9025	0,272		6,7	0,9333	0,163
1,40	0,9114	0,660		3,8	0,9038	0,266		6,8	0,9340	0,161
1,45	0,9067	0,635		3,9	0,9051	0,260		6,9	0,9347	0,160

Modèle de Weibull : fonction de Fiabilité.

$$R(t) = e^{-\left(\frac{t-\gamma}{\eta}\right)^2}$$